Information and Coding Theory

by: Gareth A. Jones - J.Mary Jones

Information and Coding Theory
Author: Gareth A. Jones, J.Mary Jones

Publisher: Springer London Ltd

Series: Springer Undergraduate Mathematics Series

Deastore.com price (info) $ 50.11

Shipping Costs: 0€ FREE Shipping by Standard Mail Details

Format: Paperback / softback

Publication date: 26 June 2000

This Product is Available
This item is available
Usually shipped within: 7 working days (info)
ISBN: 1852336226 ISBN 13: 9781852336226

Information and Coding Theory by Gareth A. Jones - J.Mary Jones

Provides an introduction to information and coding theory. This title focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon's Fundamental Theorem. Top page

Complete description

This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon's Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises. Top page

General info

Publisher & Imprint: Springer London Ltd

City: England

Pages: 223

More info: height 235 mm width 155 mm weight 371 gr thickness 12 mm

Top page

Age recommended: College/higher education

Subject Indexing & Classification Dewey:(DC21) 003.54 Library of Congress Subject: QA1-939 Mathematics

Record updated at: 14 July, 2014 time: 12:54

Summary Information and Coding Theory 1. Source Coding.- 1.1 Definitions and Examples.- 1.2 Uniquely Decodable Codes.- 1.3 Instantaneous Codes.- 1.4 Constructing Instantaneous Codes.- 1.5 Kraft's Inequality.- 1.6 McMillan's Inequality.- 1.7 Comments on Kraft's and McMillan's Inequalities.- 1.8 Supplementary Exercises.- 2. Optimal Codes.- 2.1 Optimality.- 2.2 Binary Huffman Codes.- 2.3 Average Word-length of Huffman Codes.- 2.4 Optimality of Binary Huffman Codes.- 2.5 r-ary Huffman Codes.- 2.6 Extensions of Sources.- 2.7 Supplementary Exercises.- 3. Entropy.- 3.1 Information and Entropy.- 3.2 Properties of the Entropy Function.- 3.3 Entropy and Average Word-length.- 3.4 Shannon-Fano Coding.- 3.5 Entropy of Extensions and Products.- 3.6 Shannon's First Theorem.- 3.7 An Example of Shannon's First Theorem.- 3.8 Supplementary Exercises.- 4. Information Channels.- 4.1 Notation and Definitions.- 4.2 The Binary Symmetric Channel.- 4.3 System Entropies.- 4.4 System Entropies for the Binary Symmetric Channel.- 4.5 Extension of Shannon's First Theorem to Information Channels.- 4.6 Mutual Information.- 4.7 Mutual Information for the Binary Symmetric Channel.- 4.8 Channel Capacity.- 4.9 Supplementary Exercises.- 5. Using an Unreliable Channel.- 5.1 Decision Rules.- 5.2 An Example of Improved Reliability.- 5.3 Hamming Distance.- 5.4 Statement and Outline Proof of Shannon's Theorem.- 5.5 The Converse of Shannon's Theorem.- 5.6 Comments on Shannon's Theorem.- 5.7 Supplementary Exercises.- 6. Error-correcting Codes.- 6.1 Introductory Concepts.- 6.2 Examples of Codes.- 6.3 Minimum Distance.- 6.4 Hamming's Sphere-packing Bound.- 6.5 The Gilbert-Varshamov Bound.- 6.6 Hadamard Matrices and Codes.- 6.7 Supplementary Exercises.- 7. Linear Codes.- 7.1 Matrix Description of Linear Codes.- 7.2 Equivalence of Linear Codes.- 7.3 Minimum Distance of Linear Codes.- 7.4 The Hamming Codes.- 7.5 The Golay Codes.- 7.6 The Standard Array.- 7.7 Syndrome Decoding.- 7.8 Supplementary Exercises.- Suggestions for Further Reading.- Appendix A. Proof of the Sardinas-Patterson Theorem.- Appendix B. The Law of Large Numbers.- Appendix C. Proof of Shannon's Fundamental Theorem.- Solutions to Exercises.- Index of Symbols and Abbreviations. Top page

Add your comment

Add a review - Highlight this book to a friend

Please login or register to send your review

Top page

Buying in deastore.com
is safe!